L_0 is the latent heat of vaporization at 0 °K, $p_m \Delta V_m$ is the work done in solidifying the liquid at 0 °K, and the two integrals give the work of compression in the liquid and the solid range, respectively. (V_1 is the volume of the liquid in equilibrium with its vapour, V_2 in equilibrium with the solid, and V_3 that of the solid in equilibrium with the liquid.)

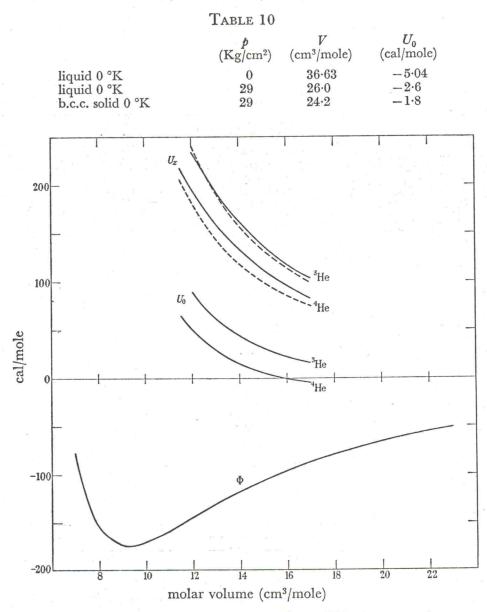


FIGURE 13. Energy relations at 0 °K for solid ⁴He and ³He. U_z is the zero-point energy; U_0 is the internal energy at absolute zero; and Φ is the classical static lattice energy calculated from the de Boer-Michels potential. ——, Experimental; -----, London (1954).

For ⁴He we have taken Swenson's (1950) estimate for one value of U_0 . According to this, U_0 for the solid at the melting pressure is $-11\cdot9$ cal/mole. In order to obtain U_0 for smaller molar volumes we have to calculate the work of compression according to equation (11). This information is known from the present experiments between $17\cdot0$ and $11\cdot5$ cm³/mole. Up to V = 17 cm³/mole we have used an extrapolation of the isotherm at 0 °K. This extrapolation gives $U_0 = -5\cdot07$ cal/mole for $V = 17\cdot0$ cm³/mole.